Dalam kimia, hibridisasi adalah sebuah konsep bersatunya orbital-orbital atom membentuk orbital hibrid yang baru yang sesuai dengan penjelasan kualitatif sifat ikatan atom.
Orbital adalah sebuah model representasi dari tingkah laku elektron-elektron dalam molekul. Dalam kasus hibridisasi yang sederhana, pendekatan ini didasarkan pada orbital-orbital atom hidrogen. Orbital-orbital yang terhibridisasikan diasumsikan sebagai gabungan dari orbital-orbital atom yang bertumpang tindih satu sama lainnya dengan proporsi yang bervariasi. Orbital-orbital hidrogen digunakan sebagai dasar skema hibridisasi karena ia adalah salah satu dari sedikit orbital yang persamaan Schrödingernya memiliki penyelesaian analitis yang diketahui. Orbital-orbital ini kemudian diasumsikan terdistorsi sedikit untuk atom-atom yang lebih berat seperti karbon, nitrogen, dan oksigen. Dengan asumsi-asumsi ini, teori hibridisasi barulah dapat diaplikasikan.
Hibridasi
Perhatikan konfigurasi elektron Be, B dan C
Be : 1s2 2s2
B : 1s2 2s2 2p1
C : 1s2 2s2 2p2
Berilium dapat membentuk senyawa yang bersifat kovalen seperti BeH2 dan BeCl2. Boron dapat membentuk senyawa dengan perbandingan 1:3 seperti BF3 dan BCl3.
Pada senyawa karbon yang lebih dari sejuta banyaknya dapat dijumpai atom karbon yang terikat melalui empat pasangan elektron ikatan.
Jika ditinjau dari konfigurasi elektron saja, maka dapat diduga bahwa, berilium yang orbitalnya terisi penuh tidak dapat membentuk satu ikatan kovalen, sedangkan karbon hanya dapat membentuk dua ikatan kovalen.
Kontradiksi antara pengamatan eksperimen dan ramalan berdasarkan model atom, menunjukkan bahwa model orbital atom masih jauh dari sempurna untuk menjelaskan ikatan kimia.
Oleh sebab itu, penyusunan elektron dalam orbital setiap bilangan kuantum utama perlu ditata kembali. Penyusunan kembali orbital dalam sebuah atom, untuk membentuk seperangkat orbital yang ekivalen dalam molekul disebut hibridisasi.
PROSES HIBRIDISASI
Proses hibridisasi berlangsung dalam tahap-tahap berikut :
(1) Elektron mengalami promosi ke orbital yang tingkat energinya lebih tinggi. Misalnya pada Be : dari 2s ke 2p)
(2) Orbital-orbital bercampur atau berhibridisasi membentuk orbital hibrida yang ekivalen.
Contoh :C mempunyai konfigurasi elektron terluar 2s2 2p2. Satu elektron dari 2s mengalami promosi menghasilkan konfigurasi elektron 2s1 2p1x 2p1y 2p1z. Orbital 2s. 2px. 2py dan 2pz berhibridisasi membentuk 4 orbital hibrida sp3 yang ekivalen berbentuk tetrahedral.
(3) Dalam hibridisasi, yang bergabungadalah orbital bukan elektron; dan
(4) Sebagian besar orbital hibrid bentuknya mirip tetapi tidak selalu identik.
MACAM HIBRIDISASI
Pada pembentukan ikatan kovalen, dua orbital atom overlap satu dengan yang lain membentuk orbital molekul. Tiap-tiap orbital atom harus berisi satu elektron, karena orbital molekul hanya dapat diisi oleh dua elektron yang spinnya berlawanan. Ini berarti, ikatan yang terbentuk oleh suatu atom, tergantung elektron yang tidak berpasangan. Kovalensi atom-atom biasanya sama dengan jumlah elektron yang tidak berpasangan. Sebelum membentuk ikatan, orbital 2s dan orbital 2p yang dalam keadaan valensi tereksitasi di atas berubah menjadi orbital baru dengan energi sama. Orbital baru ini disebut orbital hibrida sp3.
Perubahan beberapa jenis orbital menjadi orbital baru yang energinya sama disebut hibridisasi. Dapat juga dikatakan, hibridisasi ialah penggabungan orbital-orbital s, p, dan d dengan jalan menambah atau mengurangi fungsi gelombangnya membentuk fungsi gelombang baru yang menyatakan orbital hibrida.
Hibridasisasi ini dapat terjadi antara orbital s dan p atau s, p dan d. Contohnya pembentukan orbital hibrida untuk atom C
Atom
1s
2s
2px
2py
2pz
Ada tiga cara di mana proses pencampuran dapat terjadi.
● orbital 2s digabung ketiga orbital 2p. Ini dikenal sebagai hibridisasi sp3;
● orbital 2s digabung dengan dua orbital 2p. Hal ini dikenal sebagai hibridisasi sp2;
● orbital 2s digabung dengan salah satu orbital 2p. Hal ini dikenal sebagai hibridisasi sp.
1.Hibridisasi sp atau linear
Gabungan orbital s dan p, membentuk orbital baru yaitu orbital hibrida sp yang co-linear. Orbital yang besar diperoleh dengan penambahan, yang kecil dengan pengurangan dari fungsi gelombangnya. Berikut ini adalah pembentukan orbital hibrida sp
2.Hibridisasi sp2 atau trigonal planar
Kombinasi satu orbital s dan dua orbital p membentuk orbital hibrida sp2 yang bentuknya trigonal planar dengan sudut antara 1200. Ikatan dengan orbital sp2 lebih kuat daripada ikatan dengan orbital s atau orbital p. Berikut ini adalah pembentukan orbital hibrida sp2
3.Hibridisasi sp3 atau tetrahedral
Hibridisasi satu orbital s dan tiga orbital p, membentuk orbital hibrida sp3 yang strukturnya tetrahedral.
KONJUGASI
Pengaturan kembali electron melalui orbital π, terutama dalam system konjugasi atau senyawa organic yang atom-atomnya secara kovalen berikatan tunggal dan ganda secara bergantian (C=C-C=C-C) dan mempengaruhi satu sama lainnya membentuk daerah delokalisasi electron disebut dengan konjugasi. Elektron-elektron pada daerah delokalisasi ini bukanlah milik salah satu atom, melainkan milik keseluruhan system konjugasi ini.
Contoh:
Fenol (C6H5OH) memiliki sistem 6 elektron di atas dan di bawah cincin planarnya sekaligus di sekitas gugus hidroksil. Sistem konjugasi secara umumnya akan menyebabkan delokalisasi electron disepanjang orbital p yang parallel satu dengan lainnya. Hal ini akan meningkatkan stabilitas dan menurunkan energi molekul secara keseluruhan. Konjugasi dapat terjadi dengan keberadaan gugus pendonor orbital p yang berbeda. Selain ikatan tunggal dan ganda yang bergantian, sisten konjugasi dapat juga terbentuk oleh keberadaan atom yang memiliki orbital p secara parallel. Contoh, furan.
HIPERKONJUGASI
Merupakan delokalisasi yang melibatkan elektron σ. Hiperkonjugasi di atas dapat dipandang sebagai overlap antara orbital σ ikatan C-H dengan orbital π ikatan C=C, analog dengan overlap π-π. Hiperkonjugasi disebut juga resonansi tanpa ikatan. Secara singkat efek hiperkonjugasi merupakan perubahan dari suatu ikatan C-H menjadi ikatan C=C atau C≡C oleh Hα. Hiperkonjugasi dapat meningkatakan kestabilan molekul dengan semakin banyaknya Hα maka suatu molekul tersebut akan semakin stabil.
Contoh:
Jika suatu karbon yang mengikat atom hydrogen dan terikat pada atom tak jenuh atau pada satu atom yang mempunyai orbital bukan ikatan maka untuknya dapat dituliskan bentuk kanonik seperti diatas. Di dalam bentuk kanonik seperti itu sama sekali tidak ada ikatan antara karbon dengan ion hidrogen, dan resonansi seperti itu disebut resonansi tanpa ikatan. Hidrogen tidak pergi (karena resonansi tersebut bukanlah suatu hal yang nyata melainkan hanya bentuk kanonik yang berkontribusi ke struktur molekul nyata). Efek struktur diatas pada molekul nyata adalah elektron dalam C-H lebih dekat ke karbon daripada jika struktur diatas tidak berkontribusi
SENYAWA AROMATIK (BENZENA)
Senyawa aromatik terdiri dari kelas hidrokarbon yang mencakup enam anggota dan memiliki cincin karbon tak jenuh di mana elektron valensi ikatan pi terdelokalisasi atau terkonjugasi.
Senyawa ini bersifat stabil dan melimpah baik dalam bentuk alami maupun sintetisnya. Nama aromatik diambil berdasarkan pada aroma kuat yang dihasilkannya. Struktur molekul senyawa ini berbentuk siklik dan datar. Menurut aturan Huckel setiap atom siklik harus memiliki orbital p yang tegak lurus bidang cincin.
Yang termasuk senyawa aromatis adalah Senyawa benzena dan Senyawa kimia dengan sifat kimia seperti benzena.
Senyawa hidrokarbon aromatik pada umumnya bersifat non polar seperti halnya senyawa hidrokarbon alifatik dan alisiklik. Karena bersifat non polar, maka senyawa ini tidak dapat larut dalam air. Benzena sendiri merupakan molekul aromatik paling sederhana juga sering dijadikan pelarut organik. Keistimewaan benzena yaitu dapat membentuk azeotrop dengan air.
Senyawa benzena dapat disubstitusi oleh gugs lain sehingga dapat mengalami isomerisasi pada strukturnya. Hal ini dikarenakan adanya perbedaan urutan penempatan substituen pada struktur cincinnya.
Isomer yang dapat dibentuk yaitu isomer orto (o-), para (p-), dan meta (m-). Isomer para akan memiliki titik leleh yang lebih tinggi dibandingkan dengan isomer lainnya, karena lebih simetris. Dengan demikian, maka isomer ini dapat membentuk kisi kristal yang sifatnya lebih teratur dan lebih kuat.
a. Gugus Pengarah Orto, Para (Aktivator)
Gugus pada cincin akan mengarahkan substituen yang baru masuk pada posisi orto, para atau meta sesuai dengan gugus mulanya. Gugus mula tersebut yang disebut sebagai penentu orientasi. Gugus yang merupakan activator kuat adalah gugus pengarah orto, para (adisi elektrofilik mengambil tempat pada posisi orto dan para bergantung pada activator). Orientasi ini terutama disebabkan oleh kemampuan substituen pengaktif kuat untuk melepaskan elektron (gugus amino dan gugus hidoksil merupakan gugus activator yang baik).
Pada reaksi nitrasi pada toluena, dapat dilihat bahwa ion nitronium dapat mneyerang karbon cincin yang yang posisinya orto, meta, atau para terhadap gugus meta.
Pada salah satu dari ketiga penyumbang resonansi pada ion benzenonium antar (intermediet) untuk substitusi orto atau para, muatan positif berada pada karbon pembawa metil. Penyumbang resonansi itu ialah karbokation tersier dan lebih stabil daripada penyumbang lainnya, yang merupakan karbokation sekunder. Sebaliknya, dengan serangan meta, semua penyumbang adalah karbokation sekunder, muatan positif pada ion benzenonium intermediet tidak pernah bersebelahan substituen metil. Dengan demikian, gugus metal ialah pengarah orto, para, karena reaksi ini dapat berlangsung melalui karbokation intermediet yang paling stabil. Sama halnya, semua gugus alkil adalah orto, para.
Pada gugus –F, -OH, dan -NH2 memiliki pasangan elektron bebas, pasangan elektron bebas inilah yang dapat menstabilkan muatan positif di sebelahnya
Baik dalam serangan orto atau para, salah satu penyumbang pada ion benzenonium intermediet menempatkan muatan positif pada karbon hidroksil. Pergeseran pasangan elektron bebas dari oksigen ke karbon positif menyebabkan muatan positif terdelokalisasi lebih jauh, yaitu ke oksigen. Tidak mungkin ada struktur seperti ini pada serangan meta. Dengan demikian hidroksil adalah pengarah orto, para.
Pada turunan senyawa aromatik yang lain seperti pada anilina juga termasuk sebagai activator, yaitu gugus pengarah orto, para. (hal 478 fessenden)
Akibat stabilisasi resonansi anilina ialah bahwa cincin menjadi negative sebagian dan sangat menarik bagi elektrofilik yang masuk. Semua posisi orto, meta, dan para pada cincin anilina teraktifkan terhadap substitusi elektrofilik, namun posisi orto, para lebih teraktifkan dari pada posisi meta. Struktur resonansi terpaparkan di atas menunjukkan bahwa posisi-posisi orto dan para mengemban muatan negative parsial, sedangkan posisi meta tidak.
Gugus amino dalam anilina mengaktifkan cincin benzena terhadap substitusi sedemikian jauh sehingga tidak perlu katalis asam Lewis, dan sangat sukar untuk memperoleh monobromoanilina. Anilina beraksi dengan cepat membentuk 2,4,6-tribromoanilina (kedua posisi orto dan posisi para terbrominasikan).
Jadi dapat disimpulkan bahwa semua gugus dengan elektron bebas pada atom yang melekat pada cincin ialah pengarah orto dan para.
b. Gugus Pengarah Meta
Suatu pengarah meta mempunyai atom bermuatan positif atau sebagian positif yang terikat pada cincin benzena. Dalam reaksi nitrobenzena, gugus nitronya tidak menambah kesetabilan intermedietnya. Malahan intermediet substitusi orto, atau para dan keadaan transisinya kurang stabil (karena energy yang tinggi), karena sebuah struktur resonansi mengandung muatan positif pada atom berdekatan. Oleh karena itu, substitusi terjadi lebih banyak pada tempat meta, sebab keadaan transisi dan intermediatnya pada tempat yang berdekatan mengandung muatan positif.
Pada nitrobenzena, nitrogen memiliki muatan formal +1, sebagaimana ditunjukkan pada strukturnya. Persamaan untuk pembentukan ion benzenonium intermediet ialah
Salah satu penyumbang pada hybrid resonansi intermediet untuk substitusi orto atau para memiliki dua macam positif yang bersebelahan, yaitu susunan yang sangat tidak diinginkan, sebab muatan yang sama saling tolak-menolak. Tidak ada intermediet seperti ini pada meta, karena alasan inilah substitusi meta lebih disukai. Setiap gugus pengarah meta dihubungkan ke cincin aromatik oleh suatu atom yang merupakan bagian dari ikatan rangkap atau ikatan rangkap tiga, dengan ujung lainnya ialah atom yan lebih elektronegatif daripada karbon seperti atom oksigen dan nitrogen. Dalam hal ini, atom yang langsung melekat pada cincin benzena akan membawa muatan positif parsial seperti nitrogen pada gugus nitro. Ini karena penyumbang resonansi.
seperti Semua gugus yang serupa itu akan menjadi pengarah meta karena alasan yang sama seperti gugus nitro yang bersifat meta, untuk menghindari adanya dua muatan positif yang bersebelahan dalam ion benzenonium intermedietnya. Dapat disimpulkan semua gugus dengan atom yang langsung melekat pada cincin aromatik bermuatan positif atau merupakan bagian dari ikatan majemuk dengan unsure yang lebih elektronegatif ialah pengarah meta.
Struktur Benzena
Ikatan rangkap pada benzena berbeda dengan ikatan rangkap pada alkena. Ikatan rangkap pada alkena dapat mengalami reaksi adisi, sedangkan ikatan rangkap pada benzena tidak dapat diadisi, tetapi benzena dapat bereaksi secara substitusi. Contoh:
Reaksi adisi : C2H4 + Cl2 --> C2H4Cl2
Reaksi substitusi : C6H6 + Cl2 --> C6H5Cl + HCl
Menurut Friedrich August Kekule, keenam atom karbon pada benzena tersusun secara siklik membentuk segienam beraturan dengan sudut ikatan masing-masing 120°. Ikatan antaratom karbon adalah ikatan rangkap dua dan tunggal bergantian (terkonjugasi).
Analisis sinar-X terhadap struktur benzena menunjukkan bahwa panjang ikatan antaratom karbon dalam benzena sama, yaitu 0,139 nm. Adapun panjang ikatan rangkap dua C=C adalah 0,134 nm dan panjang ikatan tunggal C–C adalah 0,154 nm. Jadi, ikatan karbon-karbon pada molekul benzena berada di antara ikatan rangkap dua dan ikatan tunggal. Hal ini menggugurkan struktur dari Kekule.
Kekulé menggambarkan struktur benzena dengan atom-atom karbon dihubungkan satu dengan yang lain membentuk suatu cincin.
• August Kekulé pada tahun 1865 : Struktur tersebut menggambarkan bahwa ßstruktur benzena tersusun 3 ikatan rangkap di dalam cincin 6 anggota.
• Ketiga ikatan rangkap tersebut dapat bergeser dan kembali dengan cepat sedemikian sehingga 2 bentuk yang mungkin tersebut tidak dapat dipisahkan.
Orbital benzena
Setiap karbon pada benzena mengikat 3 atom lain menggunakan orbital hibridisasi sp2 membentuk molekul yang planar.
Benzena merupakan molekul simetris, berbentuk heksagonal dengan sudut ikatan 120o
Setiap atom C mempunyai orbital ke empat yaitu orbital p. Orbital p akan mengalami tumpang suh (overlapping) membentuk awan elektron sebagai sumber elektron.
Senyawa aromatis harus memenuhi kriteria:
— siklis
— mengandung awan elektron p yang terdelokalisasi di bawah dan di atas bidang molekul
— ikatan rangkap berseling dengan ikatan tunggal
— mempunyai total elektron p sejumlah 4n+2, dimana n harus bilangan bulisal: bila jumlah elektron p suatu cincin siklik = 12, maka n=2,5 maka bukan senyawa aromatis
Assalamualaikum wr wb, saya ingin bertanya tentang mengapa ikatan yang terbentuk oleh suatu atom, tergantung pada elektron yang tidak berpasangan ? Tolong jelaskan terima kasih
BalasHapusNama : Nina Oktriani
Nim : A1C115033
Waalaikumsalam nina , terima kasih atas pertanyaannya.menurut saya karena jika atkm telah berpasangan maka tidak akan berikatan dengan atom lain sehingga jika elektron tunggal barulah dia bisa berikatan.
HapusAssalamualaikum imel,
BalasHapusSaya ingin bertanya tentang senyawa aromatis yaitu benzena.yang ingin saya tanyakan yaitu kenapa benzena tidak dapat diadisi?
Waalaikumsalam safitri, terima kasih pertanyaannya.menurut saya,Struktur benzena merupakan senyawa kompleks dimanana menggambarkan bahwa ß struktur benzena tersusun 3 ikatan rangkap di dalam cincin 6 anggota.Ketiga ikatan rangkap tersebut dapat bergeser dan kembali dengan cepat sedemikian sehingga 2 bentuk yang mungkin tersebut tidak dapat dipisahkan.jadi tidak bisa diadisi , yang mana kuta ketahui bahwa adisi adalah penambahan.
HapusTerima kasih.
Assalamu'alaikum Warahmatullah^^
BalasHapusImel, disini saya ingin bertanya mengapa gugus metalpengarah bagi orto dan para? tolong jelaskan yaa, Terima kasih^^
Wassalamu'alaikum Warahmatullah^^
waalaikumsalam nisa ,terima kasih atas pertanyaannya.saya akan mencoba menjawab , menurut saya karena reaksi nitrasi pada toluena dapat berlangsung melalui karbokation intermediet yang paling stabil. Sama halnya, semua gugus alkil adalah orto, para.oleh karena itulah gugus metal ialah pengarah bagi orto dan para. terima kasih
Hapusassalamualaikum imel. materi yang anda samoaikan sangat bermanfaat, tetapi saya ingin menambahkan materi anda yaitu :Orbital hibrida dari oksigen
BalasHapusHibridisasi yang berikatan dengan pembentukan ikatan dalam molekul H2O dapat diterangkan menggunakan orbital hibrida sp3 pada atom oksigen .
Dua orbital ikatan dalam molekul air dapat dipandang sebagai kombinasi orbital 1s dari hydrogen dengan satu orbital sp3 dari atom oksigen membentuk dua orbital ikatan σ. Terdapat delapan electron valensi dalam molekul H2O, enam dari atom oksigen dan dua dari atom hydrogen. Empat electron valensi menghuni dua orbital ikatan σ dan empat electron lainnya menghuni dua orbital sp3 yang tidak berikatan.
Sesuai dengan ramalan teori VSEPR bahwa sudut ikatan H‑O-H dalam molekul H2O lebih kecil dari sudut tetrahedral murni disebabkan pasangan electron bebas menolak lebih kuat terhadap pasangan electron ikatan sehingga terjadi distorsi struktur dari keadaan tetrahedral murni.
Walaikumsalam nova, terima kasih atas rambahan materinya.
Hapus